Skip to content

Bolle di atomi ultrafreddi per svelare il mistero del vuoto cosmico

Uno studio pubblicato su Nature Physics mostra come gli atomi ultrafreddi possano simulare il processo di decadimento del falso vuoto, una condizione che potrebbe determinare la stabilitĆ  o la fine del nostro universo.

Immagine-in
La nascita della bolla avviene quando gli atomi ultrafreddi, come piccoli magneti preparati nello stato iniziale piĆ¹ energetico blu (falso vuoto), decadono nello stato rosso (vero vuoto). Crediti: Alessandro Zenesini, Giacomo Lamporesi

ROMA – In che tipo di vuoto si trova il nostro universo? Secondo la fisica moderna, l’universo ĆØ il risultato dell’interazione tra particelle e campi – tra cui, per esempio, quello elettromagnetico – e potrebbe trovarsi in una configurazione di equilibrio detta di falso vuoto, ovvero uno stato solo in parte ā€œstabileā€, caratterizzato da un livello di energia che non corrisponde al minimo assoluto possibile. Questo permette, in linea teorica, la transizione verso livelli di energia piĆ¹ bassi, a causa di fluttuazioni di energia di origine quantistica o termica che porterebbero a ā€œdecadereā€ nello stato veramente stabile a energia minore, detto di vero vuoto.

Questo processo puĆ² avvenire su scale di tempo molto diverse tra loro a seconda dei parametri del sistema, e prevede la formazione di ā€œbolleā€ di vero vuotoĀ all’interno del falso vuoto, in modo del tutto analogo alla formazione di gocce di liquido in un vapore raffreddato sotto il punto di condensazione.

Il fenomeno ha implicazioni molto importanti sui processi cosmologici: per questo la comunitĆ  scientifica ha continuato a indagare e a domandarsi in che tipo di vuoto si trovi il nostro universo, sviluppando teorie sofisticate e provando ad immaginare quali piattaforme sperimentali potessero confermare i vari modelli teorici, non potendo accedere direttamente ai processi che hanno avuto luogo subito dopo il Big Bang.

Oggi, nei laboratori del Pitaevskii Center for Bose-Einstein Condensation di Trento, sono stati osservati per la prima volta dei fenomeni che possono far luce sui meccanismi che determinano la stabilitĆ  del nostro universo. Lo studio,il cui primo autore ĆØ Alessandro Zenesini (Pitaevskii BEC Center, Istituto nazionale di ottica del Consiglio nazionale delle ricerche e Dipartimento di Fisica dellā€™UniversitĆ  di Trento, Tifpa Trento Institute for Fundamental Physics and Applications, INFN), ĆØ pubblicato sullā€™ultimo numero della rivista Nature Physics.

I ricercatori hanno preparato una ā€œnuvolaā€ di atomi ultrafreddi di sodio in uno stato iniziale che simula uno stato di falso vuoto. Al variare dei parametri sperimentali, hanno poi studiato dopo quanto tempo gli atomi cambiavano configurazione raggiungendo lo stato di vero vuoto. Oltre a verificare che il comportamento degli atomi fosse compatibile con le simulazioni numeriche del sistema, gli autori hanno unito le loro forze con il gruppo teorico di Ian Moss, cosmologo dellā€™UniversitĆ  di Newcastle, che ha anche collaborato con Stephen Hawking, per verificare che le piĆ¹ accreditate teorie di decadimento del falso vuotoĀ fossero compatibili con le osservazioni sperimentali.

ā€œGli atomi ultrafreddi si confermano una volta ancora come una piattaforma ideale per la simulazione quantistica sia dell’estremamente piccolo che dell’estremamente grande: in questo caso abbiamo usato le proprietĆ  magnetiche degli atomi per creare artificialmente un vero e un falso vuoto in un ambiente sperimentale estremamente stabile e controllato. Questo controllo del condensato ci ha permesso di studiare il decadimento del falso vuoto in diverse condizioni sperimentali e confrontare le osservazioni con le previsioni teoricheā€, spiega Alessandro Zenesini, ricercatore di Cnr-Ino che ha lavorato allo studio assieme a Giacomo Lamporesi e Alessio Recati dello stesso Istituto.

La verifica sperimentale assume particolare rilevanza in quanto supera le conoscenze teoriche sviluppate ad oggi: ā€œLe teorie di decadimento di falso vuoto sono state teorizzate cinquant’anni fa e quasi unicamente avendo in mente processi tipici delle alte energie, della fisica sub-nucleare e della cosmologia”, aggiunge Gabriele Ferrari (UniTrento). ā€œI risultati ottenuti rappresentano, quindi, un primo passo verso la validazione di teorie finora astratte, e avviano nuovi filoni di ricerca sperimentale sui vari aspetti della formazione della bolla di vero vuoto e del suo comportamento, con implicazioni anche nel campo della biochimica e della computazione quantisticaā€.

Questa ricerca ĆØ stata finanziata da Provincia Autonoma di Trento, INFN, MUR, Quantum Science and Technology a Trento(Q@TN), UK Quantum Technologies programme e dall’Unione Europea.

FONTE: Ufficio Stampa CNR.

Ā© 2006 - 2024 Pressitalia.net by StudioEMME